21 C
Mining News

Unpacking the environmental quandaries of critical minerals amidst the green energy drive

As both the federal and British Columbia governments work on developing strategies for critical minerals, a key obstacle arises—defining what exactly constitutes a “critical mineral.” This term, relatively new in the mining world, generally refers to materials with industrial or technological significance and potential future importance. While critical mineral mining is promoted as essential for advancing the green energy revolution, there’s a pressing need to acknowledge and address the environmental damages associated with the extraction process.

In the Kootenays region, with a rich mining history encompassing gold, silver, lead, copper, zinc, and gypsum, many minerals align with common critical mineral definitions. As demand for these resources rises, it is crucial to grasp the environmental risks associated with critical mineral mining. This understanding ensures informed decisions on project permits, avoiding the oversight of dangers in favor of economic incentives.

Supported by

Simon Wiebe, a Mining Policy and Impacts Researcher at Wildsight, highlights the necessity of assessing environmental risks alongside economic gains in critical mineral mining projects.

The Conversation recently republished an article by Elizabeth Steyn, an Assistant Professor of Law at the University of Calgary, shedding light on the challenges associated with critical minerals in the context of climate change. Steyn emphasizes the real and worsening impacts of climate change, citing events such as forest fires, warm winters, and floods across Canada. The transition to a carbon-zero future crucially depends on “battery” or “critical” minerals used in technologies ranging from smartphones to renewable energy.

However, the current supply of these critical minerals falls short, and their extraction poses significant social and ecological risks. This shortage has far-reaching consequences, affecting not only the energy transition but also exacerbating climate impacts.

Defining critical minerals is not straightforward, with various countries and organizations maintaining different lists. The Canadian Critical Minerals List includes 31 minerals, the U.S. Geological Survey Critical Minerals List contains 50, and the European Union lists 34 Critical Raw Materials. Despite these differences, there is broad agreement on including battery metals like lithium, nickel, cobalt, copper, rare earth elements, and platinum group metals.

The mining and processing of critical minerals raise concerns due to their concentration in specific geographic locations, with China holding a dominant role in supply chains. Geopolitical tensions can further complicate securing these supply chains. A World Economic Forum White Paper from December 2023 highlights risks arising from a lack of critical mineral supply, encompassing political, economic, socio-environmental, and technological dimensions.

These risks include conflicts over resources, rising resource nationalism, trade fragmentation, market volatility, stockpiling of critical minerals, exploitative and illegal mining, increased demand on ecosystems, and potential shortages in renewable technologies.

In summary, the challenges associated with critical mineral mining underscore the need for a comprehensive understanding of environmental risks, geopolitical factors, and potential social implications. Striking a balance between economic development and sustainable practices is imperative for a successful and responsible transition to a greener future.

Related posts

Expanding Gulf nations’ investments in Africa’s critical minerals: Economic opportunities and geopolitical challenges

David Lazarevic

The Philippines’ mining dilemma: Navigating critical minerals demand, environmental conservation and indigenous rights

David Lazarevic

Strategic approaches: US initiatives in Africa’s critical minerals sector to counterbalance Chinese influence

David Lazarevic
error: Content is protected !!